(32x^3-56x^2-84x-24)/(8x+4)

Simple and best practice solution for (32x^3-56x^2-84x-24)/(8x+4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (32x^3-56x^2-84x-24)/(8x+4) equation:


D( x )

8*x+4 = 0

8*x+4 = 0

8*x+4 = 0

8*x+4 = 0 // - 4

8*x = -4 // : 8

x = -4/8

x = -1/2

x in (-oo:-1/2) U (-1/2:+oo)

(32*x^3-(56*x^2)-(84*x)-24)/(8*x+4) = 0

(32*x^3-56*x^2-84*x-24)/(8*x+4) = 0

32*x^3-56*x^2-84*x-24 = 0

4*(8*x^3-14*x^2-21*x-6) = 0

8*x^3-14*x^2-21*x-6 = 0

{ 1, -1, 2, -2, 3, -3, 6, -6 }

1

x = 1

8*x^3-14*x^2-21*x-6 = -33

1

-1

x = -1

8*x^3-14*x^2-21*x-6 = -7

-1

2

x = 2

8*x^3-14*x^2-21*x-6 = -40

2

-2

x = -2

8*x^3-14*x^2-21*x-6 = -84

-2

3

x = 3

8*x^3-14*x^2-21*x-6 = 21

3

-3

x = -3

8*x^3-14*x^2-21*x-6 = -285

-3

6

x = 6

8*x^3-14*x^2-21*x-6 = 1092

6

-6

x = -6

8*x^3-14*x^2-21*x-6 = -2112

-6

{ 1/2, -1/2, 1/4, -1/4, 1/8, -1/8, -1/2, 1/2, -1/4, 1/4, -1/8, 1/8, 2/2, -2/2, 2/4, -2/4, 2/8, -2/8, -2/2, 2/2, -2/4, 2/4, -2/8, 2/8, 3/2, -3/2, 3/4, -3/4, 3/8, -3/8, -3/2, 3/2, -3/4, 3/4, -3/8, 3/8, 6/2, -6/2, 6/4, -6/4, 6/8, -6/8, -6/2, 6/2, -6/4, 6/4, -6/8, 6/8 }

1/2

x

1/2

8*x^3-14*x^2-21*x-6 = -19

1/2

-1/2

x

-1/2

8*x^3-14*x^2-21*x-6 = 0

-1/2

x+1/2

8*x^2-18*x-12

8*x^3-14*x^2-21*x-6

x+1/2

-8*x^3-4*x^2

-18*x^2-21*x-6

18*x^2+9*x

-12*x-6

12*x+6

0

8*x^2-18*x-12 = 0

DELTA = (-18)^2-(-12*4*8)

DELTA = 708

DELTA > 0

x = (708^(1/2)+18)/(2*8) or x = (18-708^(1/2))/(2*8)

x = (2*177^(1/2)+18)/16 or x = (18-2*177^(1/2))/16

x in { (18-2*177^(1/2))/16, (2*177^(1/2)+18)/16, -1/2}

4*(x-((18-2*177^(1/2))/16))*(x-((2*177^(1/2)+18)/16))*(x+1/2) = 0

(4*(x-((18-2*177^(1/2))/16))*(x-((2*177^(1/2)+18)/16))*(x+1/2))/(8*x+4) = 0

( x+1/2 )

x+1/2 = 0 // - 1/2

x = -1/2

( x-((18-2*177^(1/2))/16) )

x-((18-2*177^(1/2))/16) = 0 // + (18-2*177^(1/2))/16

x = (18-2*177^(1/2))/16

( x-((2*177^(1/2)+18)/16) )

x-((2*177^(1/2)+18)/16) = 0 // + (2*177^(1/2)+18)/16

x = (2*177^(1/2)+18)/16

x in { -1/2}

x in { (18-2*177^(1/2))/16, (2*177^(1/2)+18)/16 }

See similar equations:

| 7x/3-14/5-9/10+17x/6 | | 6x-5-8x=-7 | | -4.8r=-10.56 | | 7x/8+3/4-5x/6=0 | | A^6-80A^3-81=0 | | 5=7y+101 | | 86=-9(7p-9)+58p | | 7x+[-5(3-x)]-a=12+3x | | -111=-25a+10+14a | | 17x-7-13x=-19 | | -4r-12+6r=4 | | x=2x+6/x+5 | | -26n+11+14n=-109 | | h=-16t^2+22t+3 | | -12n+3+13n=-3 | | -19z-11+8z=-11 | | 2x+6/x+5 | | 1/10b-4=-3 | | M+1/6=-11/12 | | M+1/6=11/12 | | 1=r-11 | | 11b+18=95 | | -18+8b=54 | | -9=-4n+19 | | 79=-8a-9 | | 79=-8-9 | | -17+r-8=7 | | 4(q-16)=-40 | | 5b-7=-52 | | 7-1a=13 | | -101=11m-2 | | -2p+15=13 |

Equations solver categories